Hey, guys. Been a while, hasn’t it? Sorry for not blogging more; I blame having to “learn stuff” in “classes.” It’s very silly.

I didn’t find out about Charles Siegel’s MaBloWriMo until almost November 2 (and then there were more of the aforementioned “classes”), but it sounded cool, and gave me a reason to get back to blogging. So to make up for the late start, I’m going to try to write at least 30 total posts for the month of November, which should hopefully average in the range of 1000 words in length.

So, again because of school, I’m supposed to be spending November writing a final (expository) paper for introductory algebraic geometry. This means that I’ll probably be posting bits and pieces of drafts of said paper for MaBloWriMo, which means that there’ll be some unifying theme to some of the posts. The bad news is, I don’t actually know what it is yet, since I haven’t figured out my final paper topic, since I’ve been procrastinating horribly.

So instead I’ll talk about my usual craziness; over the next few days, I’ll ask the question: Is there a higher category theory for graphs? What is it?

So if you’re a combinatorialist, the easy way to think about categories (at least at first) is as special sorts of directed graphs with some extra structure (specifically, a way to glue together edges to make new edges.) To make this rigorous, we can think of every (small) category as having an “underlying digraph” where we just draw a directed edge from X to Y if there’s a morphism .

It turns out that this construction’s functorial: it gives us a forgetful functor from the category of small categories to the category of digraphs. (A morphism between digraphs, by the way, is exactly what it “should” be; it’s a function between the vertex sets that respects the adjacency structure.) (more…)